
�
cto / Features in isolation
https://web.eecs.utk.edu/~azh/blog/featurestheywanted.html

For this specific case (product discovery interviews) take a look at
Interviewing Users by Steve Portigal, and Validating Product Ideas by Tomer
Sharon.

"Don't Make Me Think" by Steve Krug

TELL your users that the new thing now exists! Write a good update.
Whether it’s the email or change log. Let your customers know. This is called
feedback loop.
Responsibility lies on the customer success team. Because by virtue of the
title “customer success” it’s your job to ensure the customer is successful
with your product.

Keep your users in the loop, always. Do not go build in isolation

As the author found out, most of the work in building features is often not in
the "raw functionality" of the feature, but rather in making something that
performs its functions while also not costing the user significant extra
mental or physical effort to use.

This is relevant perhaps 10% of the time. The other 90%, the devs have
absolutely no idea how to actually perform the task the user of the software
is trying to do, don't talk to customers, don't dogfood it, often don't even
understand the industry, and the result is a horrible UI which forces people
to severely adjust their existing processes to fit the software.

Then of course the devs complain about "the stupid users." To this day 99%
of address forms expect me to find my state from a drop down list of 50
entries plus DC, Puerto Rico, Guam, etc. instead of simply typing in the two
letter abbreviation.

Keep your users in the loop, always. Do not go build in isolation.
Don't underestimate engineering challenges that you only have an
external view of.
Voice your concerns to your team regularly and often. They might be to
solve them far more quickly than you or they might be able to identify
what will turn into a major roadblock.
Be ready to pivot.
Users say things for a reason, but there may be more to it than face
value.
If you make assumptions about your users, they will find a way to
surprise you.
Features will go unused if they aren't easy to use, no matter how great
they are.
A user's workflow is everything. (I keep relearning this lesson...)
Users are far more clever than you think.

Theres often more to what a human says than face value. The key is to
always be asking questions, always ask why, multiple times. Ask questions
until you feel like you're on the edge of pissing someone off.

Often, a good bit of time up front can get to a few outcomes which save you
a massive headache.

1) You understand the feature so well, you're ready to go and know it will be
used. 2) The REAL ask was something totally different, and now you know
what you need to do (nor not in some cases, sometimes its training, using
the product properly/as intended etc).
Y ' l i t b i i th t th t f ll l i

https://blog.jinskadwood.com/
https://blog.jinskadwood.com/cto
https://web.eecs.utk.edu/~azh/blog/featurestheywanted.html

You're also going to be giving the requester the space to fully explain
themselves, and sometimes they can talk themselves round as well. At the

end of the day everyones a winner when we ask more questions and listen.

You know what's worse? When you have no metrics and have NO IDEA
whether users are actually using the features you ask for.

I realised this a while back due to the fact we had a feature on customer
request, which was in release for some time. It had a bug in it, and nobody
ever told us about it - which told us nobody ever used it.
And the only reason I know nobody used it is that we collect no metrics.

As the author eventually understands— users almost always want the
features they ask for, but they may not the interpretation of them you've
created.

I recently started working in design after being a developer for more than a
decade. Back then, planning how things should work for users felt frivolous
compared to coding. Beyond that, getting working code in the editor just felt
so good that I never wanted to put it off. These are the excuses I'd make to
avoid really thinking about the users:

 - I can clean up the interface later

 - I'll figure out what features I can support when I figure out how it's going
to work

 - I've got a good intuitive sense of what would be most useful and how
people want things to work

Unless the tech requirements are extreme, knowing what features are
helpful and how users will use them should inform development— not the
other way around. Also, overestimating your understanding of how people
want something to work almost always leads to suboptimal results.
Unfortunately, this mindset led to clunky, miserable interfaces that many
people rejected. Worse, core users would learn to love it because they had
no choice, and they'd develop bad UI Stockholm syndrome. Nothing carves
a lousy user experience into stone for all future users like reliable core users
demanding nothing changes.

Obviously, solo intern projects are an edge case, but this case study
perfectly illustrates the necessity of user-focused design is in software
projects. All the better if you can find someone who specialises in it.
UX expertise brings:

 - deep experience reasoning about the way people use things

 - knowledge of many workflows, working styles, and personalities

 - understanding of how much deviation users will tolerate

 - familiarity with user research techniques and their shortcomings

 - ability to distinguish between research signal and noise

 - knowing where to dig deeper or seek more data

 - understanding what needs to be prototyped vs. mocked up vs. textually
described for tests, and ideally the ability to do all three
That perspective built into this project from the beginning would have
completely changed its trajectory. Users would be less irritated, and the
developer could have used wasted rewrite time making a more valuable end
product.

I moved from engineering to product management precisely because I

li d th t th bl f " h t h ld b b ilt" i ft h d th

realised that the problem of "what should be built" is often harder than
building the thing.

Asking users what features they want is pretty much not fair - because most
people don't have the skills to think through and answer that question, nor
is it their job to do it. It's like asking a novel reader what they'd like to see in
the next chapter. It's a cop-out with guaranteed suboptimal outcome.

Obviously product management is half art half science but in a nutshell,
much better than asking an individual what features they want would be
asking them - especially on a senior level - what problems they have and
what keeps them up at night. Getting an understanding of that and then
thinking about how those problems/risks can be addressed by your system
is a much better starting point.

The reason I say that it's important to partner with your users on the senior
level is the difference in perspective on the class of problems they want to
tackle.

For example I used to work on a trading platform. If I went to my heaviest
users and asked them what their problems were, they would probably say "I
do 1000 trades a day, and I have to tweak each one manually - can you make
that process faster" and maybe even have an idea of what that could look
like. So let's say I did that and shaved a second off each trade handling so
my user is happy cuz I saved them 16 minutes a day. Sounds like a job well
done.
But if instead (or in addition) I talked to their boss, I might hear a very
different story. Eg: "we do 1000 trades here every day, but 900 of them are
straight forward. I wish I could automate those so trader can focus on the
100 complicated ones. But instead, he's so busy doing the 1000 trades that
a lot of them get fucked up especially the complex ones."

That's a major change of perspective, from optimising an existing workflow
to optimising the entire operation. The implementation is quite different -
one is a UI optimisation and the other is establishing some sort of
automation capability that can be extended to all my clients over time. One
may be doable with the team you have, one may require standing up a new
group, etc.

At the end, the end user is happy (they get to do 10% of their previous load
but this is the high value 10% they really want to focus on.) The key point is
that neither the user nor their boss could tell me exactly what to build, but
the high level perspective allowed me to understand their problem in a
deep way and figure out a scalable solution for them and other clients.
Anyway that's just an example but yeah, your users can't tell you what to
build and yeah you need a good product manager - or someone who can
play that role well.

Automating a workflow is the best optimisation from the users point of view.

Newer

2023-02-21

Product Design is not UX Design

Older

Thursday, 29th February 2024

You’re doing customer data wr…

Jins © 2022-2025

Tags RSS feed

Made with Montaigne and bigmission

https://blog.jinskadwood.com/cto/product-design-is-not-ux-design
https://blog.jinskadwood.com/cto/product-design-is-not-ux-design
https://blog.jinskadwood.com/cto/you-re-doing-customer-data-wrong
https://blog.jinskadwood.com/cto/you-re-doing-customer-data-wrong
https://blog.jinskadwood.com/tags
https://blog.jinskadwood.com/feed.xml
https://montaigne.io/
https://bigmission.com/
https://u24.gov.ua/

